The VAD tree: A process-eye view of physical memory

Abstract

This paper describes the use of the Virtual Address Descriptor (VAD) tree structure in Windows memory dumps to help guide forensic analysis of Windows memory. We describe how to locate and parse the structure, and show its value in breaking up physical memory into more manageable and semantically meaningful units than can be obtained by simply walking the page directory for the process. Several tools to display information about the VAD tree and dump the memory regions it describes will also be presented

Stabilizing the Higgs potential with a Z′

 Abstract

Current data point toward metastability of the electroweak vacuum within the Standard Model. We study the possibility of stabilizing the Higgs potential in U(1) extensions thereof. A generic Z′ boson improves stability of the scalar potential in two ways: it increases the Higgs self-coupling, due to a positive contribution to the beta-function of the latter, and it decreases the top quark Yukawa coupling, which again has a stabilizing effect. We determine the range of U(1) charges which leads to a stable electroweak vacuum. In certain classes of models, such stabilization is possible even if the Z′ does not couple to the Higgs and is due entirely to the reduction of the top Yukawa coupling. We also study the effect of the kinetic mixing between the extra U(1) and hypercharge gauge fields.

Monogamy and Human Evolution

 “Monogamy is a problem,” said Dieter Lukas of the University of Cambridge in a telephone news conference last week. As Dr. Lukas explained to reporters, he and other biologists consider monogamy an evolutionary puzzle.

In 9 percent of all mammal species, males and females will share a common territory for more than one breeding season, and in some cases bond for life. This is a problem — a scientific one — because male mammals could theoretically have more offspring by giving up on monogamy and mating with lots of females.

In a new study, Dr. Lukas and his colleague Tim Clutton-Brock suggest that monogamy evolves when females spread out, making it hard for a male to travel around and fend off competing males.

On the same day, Kit Opie of University College London and his colleagues published a similar study on primates, which are especially monogamous — males and females bond in over a quarter of primate species. The London scientists came to a different conclusion: that the threat of infanticide leads males to stick with only one female, protecting her from other males.

Even with the scientific problem far from resolved, research like this inevitably turns us into narcissists. It’s all well and good to understand why the gray-handed night monkey became monogamous. But we want to know: What does this say about men and women?

As with all things concerning the human heart, it’s complicated.

“The human mating system is extremely flexible,” Bernard Chapais of the University of Montreal wrote in a recent review in Evolutionary Anthropology. Only 17 percent of human cultures are strictly monogamous. The vast majority of human societies embrace a mix of marriage types, with some people practicing monogamy and others polygamy. (Most people in these cultures are in monogamous marriages, though.)

There are even some societies where a woman may marry several men. And some men and women have secret relationships that last for years while they’re married to other people, a kind of dual monogamy. Same-sex marriages acknowledge commitments that in many cases existed long before they won legal recognition.

Each species faces its own special challenges — the climate where it lives, or the food it depends on, or the predators that stalk it — and certain conditions may favor monogamy despite its drawbacks. One source of clues to the origin of human mating lies in our closest relatives, chimpanzees and bonobos. They live in large groups where the females mate with lots of males when they’re ovulating. Male chimpanzees will fight with each other for the chance to mate, and they’ve evolved to produce extra sperm to increase their chances that they get to father a female’s young.

"Our own ancestors split off from the ancestors of chimpanzees about seven million years ago. Fossils may offer us some clues to how our mating systems evolved after that parting of ways. The hormone levels that course through monogamous primates are different from those of other species, possibly because the males aren’t in constant battle for females.

That difference in hormones influences how primates grow in some remarkable ways. For example, the ratio of their finger lengths is different.

In 2011, Emma Nelson of the University of Liverpool and her colleagues looked at the finger bones of ancient hominid fossils. From what they found, they concluded that hominids 4.4 million years ago mated with many females. By about 3.5 million years ago, however, the finger-length ratio indicated that hominids had shifted more toward monogamy.

Our lineage never evolved to be strictly monogamous. But even in polygamous relationships, individual men and women formed long-term bonds — a far cry from the arrangement in chimpanzees.

While the two new studies published last week disagree about the force driving the evolution of monogamy, they do agree on something important. “Once monogamy has evolved, then male care is far more likely,” Dr. Opie said.

Once a monogamous primate father starts to stick around, he has the opportunity to raise the odds that his offspring will survive. He can carry them, groom their fur and protect them from attacks.

In our own lineage, however, fathers went further. They had evolved the ability to hunt and scavenge meat, and they were supplying some of that food to their children. “They may have gone beyond what is normal for monogamous primates,” said Dr. Opie.

The extra supply of protein and calories that human children started to receive is widely considered a watershed moment in our evolution. It could explain why we have brains far bigger than other mammals.

Brains are hungry organs, demanding 20 times more calories than a similar piece of muscle. Only with a steady supply of energy-rich meat, Dr. Opie suggests, were we able to evolve big brains — and all the mental capacities that come with it.

Because of monogamy, Dr. Opie said, “This could be how humans were able to push through a ceiling in terms of brain size.”

Copyright 2013 The New York Times Company. Reprinted with permission.

Developmental venous anomalies: appearance on whole-brain CT digital subtraction angiography and CT perfusion

 

Abstract

Introduction

Developmental venous anomalies (DVA) consist of dilated intramedullary veins that converge into a large collecting vein. The appearance of these anomalies was evaluated on whole-brain computed tomography (CT) digital subtraction angiography (DSA) and CT perfusion (CTP) studies.

Falling in love is associated with immune system gene regulation

 Although falling in love is one of the most important and psychologically potent events in human life, the somatic implications of new romantic love remain poorly understood. Psychological, immunological, and reproductive perspectives offer competing predictions of the specific transcriptional regulatory shifts that might accompany the experience of falling in love. To characterize the impact of romantic love on human genome function, we conducted genome-wide transcriptome profiling of 115 circulating immune cell samples collected from 47 young women over the course of a 2-year longitudinal study. Analyses revealed a selective alteration in immune cell gene regulation characterized by up-regulation of Type I interferon response genes associated with CD1C+/BDCA-1+ dendritic cells (DCs) and CLEC4C+/BDCA-2+ DCs, and a reciprocal down-regulation of α-defensin-related transcripts associated with neutrophil granulocytes. These effects emerged above and beyond the effects of changes in illness, perceived social isolation, and sexual contact. These findings are consistent with a selective up-regulation of innate immune responses to viral infections (e.g., Type I interferons and DC) and with DC facilitation of sexual reproduction, and provide insight into the immunoregulatory correlates of one of the keystone experiences in human life.

Consciousness in the universe A review of the ‘Orch OR ’theory

Abstract

The nature of consciousness, the mechanism by which it occurs in the brain, and its ultimate place in the universe are unknown. We proposed in the mid 1990's that consciousness depends on biologically ‘orchestrated’ coherent quantum processes in collections of microtubules within brain neurons, that these quantum processes correlate with, and regulate, neuronal synaptic and membrane activity, and that the continuous Schrödinger evolution of each such process terminates in accordance with the specific Diósi–Penrose (DP) scheme of ‘objective reduction’ (‘OR’) of the quantum state. This orchestrated OR activity (‘Orch OR’) is taken to result in moments of conscious awareness and/or choice. The DP form of OR is related to the fundamentals of quantum mechanics and space–time geometry, so Orch OR suggests that there is a connection between the brain's biomolecular processes and the basic structure of the universe. Here we review Orch OR in light of criticisms and developments in quantum biology, neuroscience, physics and cosmology. We also introduce a novel suggestion of ‘beat frequencies’ of faster microtubule vibrations as a possible source of the observed electro-encephalographic (‘EEG’) correlates of consciousness. We conclude that consciousness plays an intrinsic role in the universe.

Mandelbrot Set

Benoit Mandelbrot

"According to Clarke, "the Mandelbrot set is indeed one of the most astonishing discoveries in the entire history of mathematics. Who could have dreamed that such an incredibly simple equation could have generated images of literally infinite complexity?" Clarke also notes an "odd coincidence":"

Mandelbrot emphasized the use of fractals as realistic and useful models for describing many "rough" phenomena in the real world. He concluded that "real roughness is often fractal and can be measured."[9]: 296  Although Mandelbrot coined the term "fractal", some of the mathematical objects he presented in The Fractal Geometry of Nature had been previously described by other mathematicians. Before Mandelbrot, however, they were regarded as isolated curiosities with unnatural and non-intuitive properties. Mandelbrot brought these objects together for the first time and turned them into essential tools for the long-stalled effort to extend the scope of science to explaining non-smooth, "rough" objects in the real world. His methods of research were both old and new:

The form of geometry I increasingly favored is the oldest, most concrete, and most inclusive, specifically empowered by the eye and helped by the hand and, today, also by the computer ... bringing an element of unity to the worlds of knowing and feeling ... and, unwittingly, as a bonus, for the purpose of creating beauty.[9]: 292 

Fractals are also found in human pursuits, such as music, painting, architecture, and stock market prices. Mandelbrot believed that fractals, far from being unnatural, were in many ways more intuitive and natural than the artificially smooth objects of traditional Euclidean geometry:

Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line.
  —Mandelbrot, in his introduction to The Fractal Geometry of Nature

It's also known as God's footprint