Formalization, Mechanization and Automation of Gödel's Proof of God's Existence

" Gödel's ontological proof has been analysed for the first-time with an unprecedent degree of detail and formality with the help of higher-order theorem provers. The following has been done (and in this order): A detailed natural deduction proof. A formalization of the axioms, definitions and theorems in the TPTP THF syntax. Automatic verification of the consistency of the axioms and definitions with Nitpick. Automatic demonstration of the theorems with the provers LEO-II and Satallax. A step-by-step formalization using the Coq proof assistant. A formalization using the Isabelle proof assistant, where the theorems (and some additional lemmata) have been automated with Sledgehammer and Metis"

https://arxiv.org/abs/1308.4526 

Building Netbeans at HPE


 In 2019. I was given access to HP's FTP server with I cached in collage all I got done after all my course work was building Netbeans 8.1 with java and ant in contract with HPE. I'm still working with that contract it has no expiration date. Neatbeans uses XML to build java and the internet. There are about 75 projects in the Netbeans build. In older versions the 'build.xml' file is at the the root of the directory and uses Apache Ant. Today it's built in the nbbuild directory It's my belief that Visual Studio is Oracle Developer Studio or it's more liberal counterpart Oracle now Apache Netbeans. Stemming back from Visual Studio 4.0 for Alpha, MIPS and x86. You can also use SharpDevelop from Oracle I'm also still working my the 2003 SCO contract with 2003 which was probably finished with Vista but I had to go to college.I have until 2029 with SCO and Microsoft. I personally build netbeans with netbeans I build 8.1 with 8.0 and just ran the build target from within netbeans.

MS-DOS and Windows 3.1

 


Lately I've been building MS-DOS and remember a self extracting Windows 3.1 for workgroups file that gives me all of the files not in a floppy but in a self extracting executable to just record onto CD-R or CD-RW and move into my MS-DOS installation. The file is 'en_wfw311.exe' and is subscription only. You also need the Microsoft MS-DOS CD-ROM Extensions 1.25. Theoretically you can find all of the 3.1 source from old samples and NT4/2000/2003 source. All of this old software I visualize in virtual machines.

"Source code for Windows 286/386/3.1 can be found with the leaked NT 4.0 source in ~\private\mvdm\wow16\kernel31

 

The VAD tree: A process-eye view of physical memory

Abstract

This paper describes the use of the Virtual Address Descriptor (VAD) tree structure in Windows memory dumps to help guide forensic analysis of Windows memory. We describe how to locate and parse the structure, and show its value in breaking up physical memory into more manageable and semantically meaningful units than can be obtained by simply walking the page directory for the process. Several tools to display information about the VAD tree and dump the memory regions it describes will also be presented

Stabilizing the Higgs potential with a Z′

 Abstract

Current data point toward metastability of the electroweak vacuum within the Standard Model. We study the possibility of stabilizing the Higgs potential in U(1) extensions thereof. A generic Z′ boson improves stability of the scalar potential in two ways: it increases the Higgs self-coupling, due to a positive contribution to the beta-function of the latter, and it decreases the top quark Yukawa coupling, which again has a stabilizing effect. We determine the range of U(1) charges which leads to a stable electroweak vacuum. In certain classes of models, such stabilization is possible even if the Z′ does not couple to the Higgs and is due entirely to the reduction of the top Yukawa coupling. We also study the effect of the kinetic mixing between the extra U(1) and hypercharge gauge fields.

Monogamy and Human Evolution

 “Monogamy is a problem,” said Dieter Lukas of the University of Cambridge in a telephone news conference last week. As Dr. Lukas explained to reporters, he and other biologists consider monogamy an evolutionary puzzle.

In 9 percent of all mammal species, males and females will share a common territory for more than one breeding season, and in some cases bond for life. This is a problem — a scientific one — because male mammals could theoretically have more offspring by giving up on monogamy and mating with lots of females.

In a new study, Dr. Lukas and his colleague Tim Clutton-Brock suggest that monogamy evolves when females spread out, making it hard for a male to travel around and fend off competing males.

On the same day, Kit Opie of University College London and his colleagues published a similar study on primates, which are especially monogamous — males and females bond in over a quarter of primate species. The London scientists came to a different conclusion: that the threat of infanticide leads males to stick with only one female, protecting her from other males.

Even with the scientific problem far from resolved, research like this inevitably turns us into narcissists. It’s all well and good to understand why the gray-handed night monkey became monogamous. But we want to know: What does this say about men and women?

As with all things concerning the human heart, it’s complicated.

“The human mating system is extremely flexible,” Bernard Chapais of the University of Montreal wrote in a recent review in Evolutionary Anthropology. Only 17 percent of human cultures are strictly monogamous. The vast majority of human societies embrace a mix of marriage types, with some people practicing monogamy and others polygamy. (Most people in these cultures are in monogamous marriages, though.)

There are even some societies where a woman may marry several men. And some men and women have secret relationships that last for years while they’re married to other people, a kind of dual monogamy. Same-sex marriages acknowledge commitments that in many cases existed long before they won legal recognition.

Each species faces its own special challenges — the climate where it lives, or the food it depends on, or the predators that stalk it — and certain conditions may favor monogamy despite its drawbacks. One source of clues to the origin of human mating lies in our closest relatives, chimpanzees and bonobos. They live in large groups where the females mate with lots of males when they’re ovulating. Male chimpanzees will fight with each other for the chance to mate, and they’ve evolved to produce extra sperm to increase their chances that they get to father a female’s young.

"Our own ancestors split off from the ancestors of chimpanzees about seven million years ago. Fossils may offer us some clues to how our mating systems evolved after that parting of ways. The hormone levels that course through monogamous primates are different from those of other species, possibly because the males aren’t in constant battle for females.

That difference in hormones influences how primates grow in some remarkable ways. For example, the ratio of their finger lengths is different.

In 2011, Emma Nelson of the University of Liverpool and her colleagues looked at the finger bones of ancient hominid fossils. From what they found, they concluded that hominids 4.4 million years ago mated with many females. By about 3.5 million years ago, however, the finger-length ratio indicated that hominids had shifted more toward monogamy.

Our lineage never evolved to be strictly monogamous. But even in polygamous relationships, individual men and women formed long-term bonds — a far cry from the arrangement in chimpanzees.

While the two new studies published last week disagree about the force driving the evolution of monogamy, they do agree on something important. “Once monogamy has evolved, then male care is far more likely,” Dr. Opie said.

Once a monogamous primate father starts to stick around, he has the opportunity to raise the odds that his offspring will survive. He can carry them, groom their fur and protect them from attacks.

In our own lineage, however, fathers went further. They had evolved the ability to hunt and scavenge meat, and they were supplying some of that food to their children. “They may have gone beyond what is normal for monogamous primates,” said Dr. Opie.

The extra supply of protein and calories that human children started to receive is widely considered a watershed moment in our evolution. It could explain why we have brains far bigger than other mammals.

Brains are hungry organs, demanding 20 times more calories than a similar piece of muscle. Only with a steady supply of energy-rich meat, Dr. Opie suggests, were we able to evolve big brains — and all the mental capacities that come with it.

Because of monogamy, Dr. Opie said, “This could be how humans were able to push through a ceiling in terms of brain size.”

Copyright 2013 The New York Times Company. Reprinted with permission.

Developmental venous anomalies: appearance on whole-brain CT digital subtraction angiography and CT perfusion

 

Abstract

Introduction

Developmental venous anomalies (DVA) consist of dilated intramedullary veins that converge into a large collecting vein. The appearance of these anomalies was evaluated on whole-brain computed tomography (CT) digital subtraction angiography (DSA) and CT perfusion (CTP) studies.